top of page
Test Tubes

The Ali Lab

Drug Discovery and Biotechnology Development at the University of Miami


Welcome to our lab!

We focus on finding new treatments for disorders of the nervous system, kidneys, and cancer. Our research includes the creation of biotechnologies and analytical tools to illuminate disease biology and enable drug discovery. Projects typically involve the identification of novel drug targets, performance of screening campaigns, and development of promising therapeutic candidates. We collaborate with academic and industry partners in the US and across the world to translate our discoveries into real-world applications.


Our Approach to Drug Discovery
Let Biology Lead the Way

 Our lab uses state-of-the-art phenotypic screening technologies, machine learning, and cutting-edge biological models (primary tissue to 3D organoids) to identify effective drug targets. We then use knowledge of these targets to help design effective drugs, including ones that simultaneously engage multiple targets (polypharmacology) to maximize efficacy and improve safety. This highlights the important role of academic drug discovery, where academicians have more room to innovate and explore novel approaches. It also underscores the importance of academia-industry partnerships to then translate those innovations into clinical applications. You can read more about the topic in this review by Dr. Ali:

Platform Technologies

We have led the development and implementation of idTRAX, a biotechnology that combines phenotypic screening with biochemical profiling and machine learning to identify drug targets with unprecedented speed and efficiency. We also actively develop image analysis algorithms and computational workflows to suit our discovery needs when such solutions are not readily available.


We use phenotypic screening technologies and podocytes from human origin to identify therapeutic candidates for kidney disease. We have identified a novel compound for treating diabetic kidney disease, and are developing it into a lead candidate with our collaborators. This candidate showed promising in vivo activity and is currently in  preclinical development. 

Learn more


We have identified drug targets for modulating various biological processes related to healing of the central nervous system (CNS) following injury, including processes related to nerve regeneration and neuroinflammation. We use our knowledge of these targets to develop drug candidates for treating CNS injuries. Our candidate for spinal cord injury is currently in preclinical development.


By screening compounds on cancer cells as well as normal cells, we can identify compounds that selectively kill the cancer cells while sparing normal tissue cells. We then use our idTRAX platform to identify drug targets that selectively sensitize cancer cells. This is of major importance for developing effective oncology drugs that do not have broad toxicity and do not further reduce the function of organs already burdened by the presence of a tumor.

Anchor 1

The NeuroKinome Project (NKP)

Originally trained as a kinase biochemist, Dr. Ali maintains intensive research interest into this family of drug targets. Kinases regulate most - if not all - aspects of cell biology, and mounting evidence demonstrates that kinases critically mediate both degenerative and regenerative CNS pathologies. The kinome represents the second largest drug target family (after GPCRs), despite the fact that only ~10% of all kinases are currently targeted by FDA approved drugs. Utilizing the kinome to treat the CNS therefor remains a novel idea that is yet to be exploited.


As a member of the Miami Project to Cure Paralysis (MP), our lab collaborates with others in the MP to develop innovative technologies that could accelerate the identification of kinase drug targets. We also develop cell-based assays that can be readily deployed for probing mechanisms related to nerve regeneration and CNS immunomodulation. The NKP is a multi-lab collaboration between Dr. Ali's group and several others at the MP (Lemmon/Bixby, Lee, Brambilla). The overall goal is to increase the translational potential of research into therapeutics for CNS repair.

Anchor 2

Funding support


National Institutes of Health



USA Department of Defense


State of Florida


Industry Sponsors


Miami Project

Katz Drug Discovery

W. H. Coulter Foundation

Sylvester Cancer Center

bottom of page